Friday, 25 August 2017

Moving Average In R


Adicionar uma tendência ou linha de média móvel para um gráfico Aplica-se a: Excel 2016 Word 2016 PowerPoint 2016 Excel 2013 Word 2013 Outlook 2013 PowerPoint 2013 Mais. Menos Para mostrar tendências de dados ou médias móveis em um gráfico que você criou. Você pode adicionar uma linha de tendência. Você também pode estender uma linha de tendência além de seus dados reais para ajudar a prever valores futuros. Por exemplo, a seguinte linha de tendência linear prevê dois trimestres à frente e mostra claramente uma tendência ascendente que parece promissora para as vendas futuras. Você pode adicionar uma linha de tendência a um gráfico 2-D que não está empilhado, incluindo área, barra, coluna, linha, estoque, dispersão e bolha. Você não pode adicionar uma linha de tendência a um gráfico empilhado, 3-D, radar, torta, superfície ou donut. Adicionar uma linha de tendência No gráfico, clique na série de dados à qual pretende adicionar uma linha de tendência ou uma média móvel. A linha de tendência começará no primeiro ponto de dados da série de dados que você escolher. Marque a caixa Trendline. Para escolher um tipo diferente de linha de tendência, clique na seta ao lado de Trendline. E clique em Exponencial. Previsão Linear. Ou média móvel de dois períodos. Para linhas de tendência adicionais, clique em Mais opções. Se escolher Mais opções. Clique na opção desejada no painel Formato da linha de tendência em Opções da linha de tendência. Se você selecionar Polynomial. Digite a potência mais alta para a variável independente na caixa Ordem. Se você selecionar Média em Movimento. Digite o número de períodos a serem usados ​​para calcular a média móvel na caixa Período. Dica: Uma linha de tendência é mais precisa quando seu valor R-quadrado (um número de 0 a 1 que revela o quanto os valores estimados para a linha de tendência correspondem aos seus dados reais) está em ou próximo de 1. Quando você adiciona uma linha de tendência aos seus dados , O Excel calcula automaticamente o seu valor R-quadrado. Você pode exibir esse valor em seu gráfico, marcando o valor Exibir valor R-quadrado na caixa de gráfico (painel Formato Trendline, opções de linha de tendência). Você pode aprender mais sobre todas as opções de linha de tendência nas seções abaixo. Linhas de tendência linear Use este tipo de linha de tendência para criar uma linha reta com o melhor ajuste para conjuntos de dados lineares simples. Seus dados são lineares se o padrão em seus pontos de dados se parecer com uma linha. Uma linha de tendência linear geralmente mostra que algo está aumentando ou diminuindo a uma taxa constante. Uma linha de tendência linear usa essa equação para calcular o ajuste de mínimos quadrados para uma linha: onde m é a inclinação eb é a interceptação. A seguinte linha de tendência linear mostra que as vendas de geladeiras têm aumentado consistentemente ao longo de um período de 8 anos. Observe que o valor R-squared (um número de 0 a 1 que revela quão próximos os valores estimados para a linha de tendência correspondem aos seus dados reais) é 0.9792, que é um bom ajuste da linha aos dados. Mostrando uma linha curva melhor ajustada, esta linha de tendência é útil quando a taxa de alteração nos dados aumenta ou diminui rapidamente e, em seguida, nivela para fora. Uma linha de tendência logarítmica pode usar valores negativos e positivos. Uma linha de tendência logarítmica usa esta equação para calcular o ajuste de mínimos quadrados através de pontos: onde c e b são constantes e ln é a função de logaritmo natural. A seguinte linha de tendência logarítmica mostra o crescimento populacional predito de animais em uma área de espaço fixo, onde a população nivelada como espaço para os animais diminuiu. Observe que o valor R-quadrado é 0.933, que é um ajuste relativamente bom da linha para os dados. Essa linha de tendência é útil quando os dados flutuam. Por exemplo, quando você analisa ganhos e perdas em um grande conjunto de dados. A ordem do polinômio pode ser determinada pelo número de flutuações nos dados ou por quantas curvas (colinas e vales) aparecem na curva. Tipicamente, uma linha de tendência polinomial da Ordem 2 tem apenas uma colina ou vale, uma Ordem 3 tem uma ou duas colinas ou vales, e uma Ordem 4 tem até três colinas ou vales. Uma linha de tendência polinomial ou curvilínea usa esta equação para calcular o ajuste de mínimos quadrados através de pontos: onde b e são constantes. A seguinte linha de tendência polinomial da Ordem 2 (uma colina) mostra a relação entre a velocidade de condução eo consumo de combustível. Observe que o valor R-quadrado é 0,979, que é próximo a 1, portanto, as linhas um bom ajuste para os dados. Mostrando uma linha curva, esta linha de tendência é útil para conjuntos de dados que comparam medidas que aumentam a uma taxa específica. Por exemplo, a aceleração de um carro de corrida em intervalos de 1 segundo. Você não pode criar uma linha de tendência de energia se seus dados contiverem valores zero ou negativos. Uma linha de tendência de energia usa esta equação para calcular o ajuste de mínimos quadrados através de pontos: onde c e b são constantes. Nota: Esta opção não está disponível quando os dados incluem valores negativos ou zero. O gráfico de medidas de distância a seguir mostra a distância em metros por segundos. A linha de tendência de energia demonstra claramente a crescente aceleração. Observe que o valor R-quadrado é 0.986, que é um ajuste quase perfeito da linha para os dados. Mostrando uma linha curva, esta linha de tendência é útil quando os valores dos dados sobem ou descem em taxas constantemente crescentes. Não é possível criar uma linha de tendência exponencial se os dados contiverem valores zero ou negativos. Uma linha de tendência exponencial usa esta equação para calcular o ajuste de mínimos quadrados através de pontos: onde c e b são constantes ee é a base do logaritmo natural. A linha de tendência exponencial seguinte mostra a quantidade decrescente de carbono 14 num objecto à medida que envelhece. Observe que o valor R-quadrado é 0,990, o que significa que a linha se encaixa perfeitamente os dados. Moving Average trendline Esta linha de tendência evens out flutuações em dados para mostrar um padrão ou tendência mais claramente. Uma média móvel usa um número específico de pontos de dados (definido pela opção Período), os calcula em média e usa o valor médio como um ponto na linha. Por exemplo, se Period for definido como 2, a média dos dois primeiros pontos de dados é usada como o primeiro ponto na linha de tendência de média móvel. A média do segundo e terceiro pontos de dados é usada como o segundo ponto na linha de tendência, etc. Uma linha de tendência de média móvel usa esta equação: O número de pontos em uma linha de tendência de média móvel é igual ao número total de pontos na série menos o Número que você especificar para o período. Em um gráfico de dispersão, a linha de tendência é baseada na ordem dos valores de x no gráfico. Para obter um resultado melhor, classifique os valores x antes de adicionar uma média móvel. A seguinte linha de tendência de média móvel mostra um padrão no número de casas vendidas ao longo de um período de 26 semanas. Moving médias em R Para o melhor do meu conhecimento, R não tem uma função interna para calcular médias móveis. Usando a função de filtro, no entanto, podemos escrever uma função curta para médias móveis: Podemos então usar a função em qualquer dado: mav (dados) ou mav (data, 11) se quisermos especificar um número diferente de pontos de dados Do que o padrão 5 plotando obras como esperado: plot (mav (dados)). Além do número de pontos de dados sobre os quais a média, também podemos alterar o argumento de lados das funções de filtro: sides2 usa ambos os lados, sides1 usa apenas valores passados. Compartilhe: Navegação de posts Navegação de comentários Comentário de navegação8.4 Modelos de média móvel Em vez de usar valores passados ​​da variável de previsão em uma regressão, um modelo de média móvel usa erros de previsão passados ​​em um modelo de regressão. Y e teta teta e dots theta e, onde et é ruído branco. Referimo-nos a isto como um modelo MA (q). É claro que não observamos os valores de et, então não é realmente regressão no sentido usual. Observe que cada valor de yt pode ser considerado como uma média móvel ponderada dos últimos erros de previsão. No entanto, os modelos de média móvel não devem ser confundidos com o alisamento médio móvel discutido no Capítulo 6. Um modelo de média móvel é usado para prever valores futuros, enquanto o alisamento médio móvel é usado para estimar o ciclo tendencial de valores passados. Figura 8.6: Dois exemplos de dados de modelos de média móvel com diferentes parâmetros. Esquerda: MA (1) com y t 20e t 0,8e t-1. Direita: MA (2) com y t e t - e t-1 0,8e t-2. Em ambos os casos, e t é normalmente distribuído ruído branco com média zero e variância um. A Figura 8.6 mostra alguns dados de um modelo MA (1) e um modelo MA (2). Alterando os parâmetros theta1, dots, thetaq resulta em diferentes padrões de séries temporais. Tal como acontece com modelos autorregressivos, a variância do termo de erro e só mudará a escala da série, não os padrões. É possível escrever qualquer modelo AR (p) estacionário como um modelo MA (infty). Por exemplo, usando a substituição repetida, podemos demonstrar isso para um modelo AR (1): begin yt amp phi1y et amp phi1 (phi1y e) amp phi12y phi1 e amp phi13y phi12e phi1 e amptext final Fornecido -1 lt phi1 lt 1, o valor de phi1k será menor à medida que k for maior. Assim, eventualmente, obtemos yt et phi1 e phi12 e phi13 e cdots, um processo MA (infty). O resultado inverso é válido se impomos algumas restrições nos parâmetros MA. Em seguida, o modelo MA é chamado invertible. Ou seja, que podemos escrever qualquer processo de MA (q) invertível como um processo AR (infty). Modelos Invertiveis não são simplesmente para nos permitir converter de modelos MA para modelos AR. Eles também têm algumas propriedades matemáticas que torná-los mais fáceis de usar na prática. As restrições de invertibilidade são semelhantes às restrições de estacionaridade. Para um modelo MA (1): -1lttheta1lt1. Para um modelo MA (2): -1lttheta2lt1, theta2theta1 gt-1, theta1-theta2 lt 1. Condições mais complicadas mantêm-se para qge3. Novamente, R irá cuidar dessas restrições ao estimar os modelos.

No comments:

Post a Comment